Stochastic Optimization for Tactical Demand Allocation in Large-Scale Supply Chains
Conferenze
Selene Silvestri
Massachussets Institute of Technology, USA
This work introduces a novel stochastic modeling approach to solve large-scale network design problems.
We propose a multi-phase approach based on Sample Average Approximation that includes a pre-processing phase to reduce the feasible solution space and increase tractability of the problem.
We apply the methodology to a real-world case study with a world-leading pharmaceutical company to improve tactical and operational demand allocation decisions.
By explicitly accounting for complexities including multi-commodity flow and customer demand uncertainties, we present a solution approach that accurately represents real-world supply chain networks and constraints.
We demonstrate that the proposed stochastic solution strategy outperforms both the current state network and the expected value optimization.
We also explore the impact of using intra-network redeployments and on-demand transportation mode alternatives on demand allocation decisions and cost metrics. Through the analysis, we highlight the resilience of the stochastic solution to changes in network settings, as well as the benefit of incorporating flexibility in the network.
Dr. Silvestri is a Research Scientist at the MIT CTL Intelligent Logistics Systems Lab. Her current research focuses on supply chain network design and inventory management. Her work is conducted in collaboration with global organizations and aims to leverage optimization methods to enhance their decision-making in supply chain management.
Dr. Silvestri received her Ph.D. in Computer Science from the University of Salerno, in Italy. During her Ph.D. she was a Visiting Student at the Interuniversity Research Center on Enterprise Networks, Logistics and Transportation (CIRRELT) in Montréal, Canada. Following her doctoral studies, Dr. Silvestri was a Postdoctoral Fellow at HEC in Montréal, Canada, affiliated with the Institute for Data Valorisation (IVADO) and CIRRELT. Before joining MIT, Dr. Silvestri worked as a Pre-Sales Technical Consultant in Optimization at FICO.
Data
12:15 - 13:00
Organizzatore
Politecnico di MilanoEventi
21
gennaio 2026
WINTER SPORTS TECH. Innovazione e tecnologie del Politecnico di Milano per gli Sport Invernali
03
febbraio 2026
Convegno dei risultati di Ricerca 2025 del Tavolo di Lavoro Logistics Healthcare
05
febbraio 2026
Convegno dei risultati di Ricerca dell’Osservatorio Artificial Intelligence
10
febbraio 2026
Smart Home tra continuità e innovazione: sicurezza, nuovi ecosistemi e AI aprono il futuro
19
febbraio 2026
Convegno di presentazione dei Risultati progetto Formazione nelle PMI italiane
24
febbraio 2026
Convegno dei risultati di Ricerca dell’Osservatorio Droni e Mobilità Aerea Avanzata
26
febbraio 2026
Convegno dei risultati di Ricerca dell’Osservatorio Cybersecurity & Data Protection
10
marzo 2026
Convegno dei risultati di Ricerca dell’Osservatorio Digital & Sustainable
11
marzo 2026
Convegno dei risultati di Ricerca dell’Osservatorio XR Technologies & Immersive Experience
12
marzo 2026
Convegno dei risultati di Ricerca dell’Osservatorio Innovative Payments
16
aprile 2026